Check for updates

Journal of Ayurveda and Integrated Medical Sciences

Publisher

Maharshi Charaka

www.maharshicharaka.in

2025 Volume 10 Number 3 MARCH

Integrative approaches to Diabetes Management: Evaluating the Impact of Naturopathy, Diet, Yoga, and Herbal Therapy Compared to Conventional Treatments

Upadhyay RT^{1*}, Upadhyay AK²

DOI:10.21760/jaims.10.3.29

- 1* Ruchita T Upadhyay, Naturopathy and Yogic Science Expert, Ashwamedha Health and Wellness Institute, Kankhal, Haridwar, Uttarakhand, India.
- ² Avnish K Upadhyay, Senior Consultant, Rishikul Campus Hospital, Uttarakhand Ayurved University, Haridwar, Uttarakhand, India.

Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia, insulin resistance, and progressive multi-organ complications. Conventional treatment strategies predominantly rely on pharmacological interventions, such as insulin therapy and oral hypoglycemic agents, which effectively regulate blood glucose levels but may be associated with adverse effects, medication dependency, and limited long-term sustainability. In contrast, complementary and alternative medicine (CAM), including naturopathy, dietary interventions, yoga, and herbal therapy, has emerged as a promising adjunct or alternative approach, addressing the underlying metabolic imbalances and promoting holistic well-being. This review critically examines the scientific evidence supporting CAM therapies in diabetes management, comparing their efficacy with conventional treatments. Studies suggest that yoga enhances insulin sensitivity, herbal formulations regulate glucose metabolism, and naturopathic approaches, including hydrotherapy and detoxification, contribute to glycemic stability. Additionally, dietary interventions such as the Mediterranean and lowglycemic diets have shown significant potential in reducing HbA1c levels and improving lipid profiles. Despite promising outcomes, challenges such as standardization, regulatory oversight, and patient adherence remain barriers to widespread integration into mainstream diabetes care. Future research should focus on large-scale clinical trials, mechanistic studies, and integrative treatment models to validate and optimize the role of CAM in diabetes management. A multidisciplinary approach combining evidence-based conventional treatments with scientifically validated CAM therapies may offer a more comprehensive and sustainable diabetes care strategy.

Keywords: Diabetes Mellitus, Naturopathy, Herbal Medicine, Yoga, Integrative Medicine

Corresponding Author

How to Cite this Article

To Browse

Ruchita T Upadhyay, Naturopathy and Yogic Science Expert, Ashwamedha Health and Wellness Institute, Kankhal, Haridwar, Uttarakhand, India.

Email:

ashwamedhawellness007@gmail.com

Upadhyay RT, Upadhyay AK, Integrative approaches to Diabetes Management: Evaluating the Impact of Naturopathy, Diet, Yoga, and Herbal Therapy Compared to Conventional Treatments. J Ayu Int Med Sci. 2025;10(3):184-193.

Available From

https://jaims.in/jaims/article/view/4106/

Manuscript Received 2025-02-13 Review Round 1 2025-02-27 **Review Round 2** 2025-03-07

Review Round 3 2025-03-17 Accepted 2025-03-27

Conflict of Interest

Funding Nil Ethical Approval

Plagiarism X-checker 11.63 Note

© 2025 by Upadhyay RT, Upadhyay AK and Published by Maharshi Charaka Ayurveda Organization. This is an Open Access article licensed under a Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/ unported [CC BY 4.0].

Introduction

Diabetes mellitus is a growing global health concern, affecting millions of individuals worldwide. Conventional medical treatments aim to regulate blood glucose levels and prevent complications, but long-term reliance on medications can lead to side effects and reduced efficacy over time. Alternative such as naturopathy, diet-based therapies interventions, yoga, and herbal remedies offer potential adjunctive or alternative treatments for diabetes management. This paper reviews the scientific literature on these alternative approaches and compares their effectiveness with conventional treatments. Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia resulting from defects in insulin secretion, insulin action, or both.[1] The prevalence of diabetes has increased significantly worldwide, with Type 2 Diabetes Mellitus (T2DM) being the most common form, often associated with obesity, sedentary lifestyle, and poor dietary habits.[2] Conventional treatments for diabetes include pharmacotherapy, insulin therapy, and lifestyle modifications; however, these approaches often come with limitations such as side effects, cost, and non-compliance.[3] Alternative complementary therapies, including naturopathy, yoga, and dietary interventions, have gained attention for their potential to improve glycemic control and overall well-being in diabetic patients. [4] Studies suggest that Yoga and Pranayama (regulated breathing techniques) significantly impact lipid metabolism, reducing oxidative stress improving insulin sensitivity in diabetic individuals.[5][6] Meta-analyses indicate that yoga interventions lead to reductions in fasting plasma glucose and glycated hemoglobin (HbA1c) levels, demonstrating their effectiveness as adjunctive therapies for diabetes management.[7]

Naturopathy emphasizes a holistic approach by incorporating dietary modifications, naturopathy, and herbal medicine, which have shown promising results in diabetes management. [8] Research highlights the potential benefits of plant-based diets and phytochemicals in improving insulin sensitivity and preventing diabetes-related complications. [9] A growing body of evidence supports that whole-food, plant-based nutrition improves metabolic markers such as blood glucose, cholesterol levels, and inflammatory responses in diabetic patients. [10][11]

Several clinical studies have reported significant improvements in glycemic control among patients who adopted a naturopathic approach combined conventional therapies.[12] Furthermore, emerging research suggests that stem cell therapy, when integrated with naturopathy, offer long-term solutions for diabetes management and beta-cell regeneration.[13] Plant-based diets, naturopathy, yoga, and complementary medicine have shown potential in managing type 2 diabetes by improving glycemic control, insulin sensitivity, and overall metabolic health. Research highlights the benefits of plant-derived phytochemicals, dietary modifications, and holistic interventions such as Pranayama and Yoqasana in reducina diabetes-related complications. Studies on naturopathic treatments demonstrate significant improvements in HbA1c levels, weight management, and quality of life, with long-term benefits observed in some cases. Integrative approaches combining yoga naturopathy have been particularly effective in enhancing metabolic outcomes. A randomized trial further supports role of naturopathic interventions in diabetes management, emphasizing their positive impact on health & well-being.[14-21]

The use of natural products, including herbal medicine and bioactive compounds from plants, has been widely explored for their antidiabetic properties, showing potential in reducing insulin resistance and improving pancreatic function. In light of these findings, the integration of alternative therapies with conventional diabetes management strategies could provide a more comprehensive approach to controlling the disease. This review aims to explore the effectiveness of naturopathy, yoga, and plant-based dietary interventions in diabetes management while highlighting recent advancements in these fields. The review will also address the role of natural phytochemicals and future therapeutic interventions, including medicine and holistic regenerative lifestyle modifications.

Methodology

Study Design

This review follows a systematic and comparative approach, analyzing peer-reviewed literature, clinical trials, meta-analyses, and mechanistic studies on the role of naturopathy, diet, yoga, and herbal therapy in diabetes management.

Data Sources and Selection Criteria

Databases searched: PubMed, Scopus, Web of Science, Google Scholar, ScienceDirect, and Cochrane Library.

Ethical Considerations

Since this is a review-based study, no direct human or animal subjects were involved.

All data were obtained from publicly available scientific literature, ensuring ethical compliance with academic integrity standards.

Naturopathy and Diabetes Management

Naturopathy emphasizes a holistic approach, utilizing lifestyle changes, five element therapy,

And detoxification methods to regulate blood sugar levels. Studies have shown that naturopathic interventions improve glycemic control, reduce oxidative stress, and enhance overall well-being in diabetic patients. A prospective cohort study indicated that patients undergoing naturopathy and yoga therapy showed significant reductions in HbA1c levels and insulin dependence compared to those on conventional medication alone. Integrating Five Elements Therapy into diabetes management offers a holistic approach that aligns with the body's physical, biochemical parameters and balance [22]. Below is a detailed table outlining each element's role, corresponding naturopathic applications, scientific insights, and relevant references [Table - 1]:

Element	Physiological	ogical Role in Diabetes Naturopathic Applications		Duration of	Demographic Considerations	
	Function	Management		Application		
Earth	Stability,	Supports pancreatic	Mud Therapy: Mineral-rich mud packs on	Mud therapy: 20-30	Ideal for diabetics with neuropathy &	
(Prithvi)	structural	function, improves	the abdomen to stimulate pancreatic	minutes, 3-5 times	digestive issues. Avoid mud therapy in	
	integrity,	digestion	function.	per week	cold weather for individuals with	
	musculoskeletal				circulation problems.	
	support					
Water	Detoxification,	Enhances hydration,	Hydrotherapy: Warm baths, cold	Hydrotherapy: 15-30	Beneficial for diabetics with circulatory	
(Jala)	circulation, joint	supports kidney	compresses to boost circulation &	minutes daily.	issues & fluid retention.	
	lubrication	function, aids in glucose	metabolism.			
		metabolite detoxification				
Fire	Metabolism,	Governs digestion,	Sun Therapy (Heliotherapy): Sun	Sun therapy: 15-20	Recommended for obese diabetics &	
(Agni)	thermoregulation,	enhances enzymatic	exposure increases vitamin D levels,	minutes of morning	those with vitamin D deficiency. Avoid	
	enzymatic activity	activity, and improves	boosting insulin sensitivity	sun exposure daily.	excessive sun exposure for those with	
		glucose metabolism			photosensitivity or heat intolerance.	
Air	Oxygenation,	Enhances oxygen	Breathing Techniques (Pranayama):	Pranayama: 10-15	Ideal for working professionals, elderly	
(Vayu)	neural function,	supply, improves nerve	Enhances oxygenation & reduces stress-	minutes daily.	diabetics & those with neuropathy.	
	movement	function, and prevents	induced insulin resistance.		Intense breathing techniques should	
		diabetic neuropathy			be avoided by hypertensive individuals.	
Space	Cellular	Regulates intercellular	Meditation & Sound Therapy: Lowers	Meditation: 15-30	Ideal for stress-induced diabetes &	
(Akasha)	communication,	signaling, reduces	stress hormones (cortisol) linked to insulin	minutes daily. Fasting	metabolic syndrome.	
	energy flow,	stress-related insulin	resistance. Fasting Therapy: Intermittent	therapy: Once a week	Fasting is not advised for insulin-	
	homeostasis	resistance	fasting for blood sugar stabilization	or intermittent fasting.	dependent diabetics.	

Dietary Interventions

Diet plays a crucial role in diabetes management. Plant-based diets, low-glycemic-index foods, and carbohydrate-controlled meal plans have been effective in maintaining stable blood glucose levels. Research indicates that Mediterranean and vegan diets can significantly reduce HbA1c levels and improve insulin sensitivity. Comparatively, conventional treatment focuses on dietary guidelines but often incorporates pharmacological support to achieve glycemic control. [23]

Here is a comprehensive table outlining specific diets for diabetes management, including their therapeutic effects, recommended duration, contraindications, and scientific insights [Table – 2]:

Diet Type	Therapeutic Effects	Recommended	Contraindications	Scientific Insights & References
		Duration		
Mediterranean Diet (Rich in	Reduces HbA1c levels	Long-term	Not ideal for those with nut or	Studies shown to decrease HbA1c levels
healthy fats, whole grains, lean	Improves insulin sensitivity	lifestyle	seafood allergies May require	(Nutrients, 2020)[24]
protein, nuts, and vegetables)	Lowers cardiovascular risk	adoption	modification for kidney patients due	
			to protein intake	
Vegan Diet (Plant-based,	Enhances glycemic control	Long-term	Risk of B12 deficiency May not suit	Research indicates fasting blood glucose
avoiding all animal products, rich	Reduces oxidative stress	lifestyle	individuals needing high protein	reduction by 20% and HbA1c drop by
in fiber and antioxidants)	Lowers cholesterol levels	adaptation	intake	0.4-0.8% (Nutrients, 2023)[25]
Low-Carbohydrate Diet (Restricts	Lowers postprandial glucose	Short-term (3-6	Not recommended for type 1	A meta-analysis found that low-carb diets
refined carbs, focusing on	spikes Aids in weight	months) or	diabetics Can cause ketoacidosis in	reduce HbA1c by 0.5-1.3% (Metabolites,
proteins, fats, and non-starchy	management Improves	cyclical	extreme cases	2023) [26]
vegetables)	metabolic syndrome			
Ketogenic Diet (High fat, very	Drastically lowers blood sugar	Short-term (up	Risk of ketoacidosis in insulin-	Studies show that HbA1c reductions of 1-
low carb, moderate protein)	levels Enhances fat	to 6 months)	dependent diabetics Can cause	1.5% are common, but long-term safety
	metabolism May reduce		electrolyte imbalance	is debated (Explor Foods Foodomics,
	insulin dependency			2024)[27]
Paleo Diet (Focuses on lean	Reduces inflammation	Short to	May cause calcium deficiency Not	Found to lower HbA1c by 0.5-1.0%,
meats, fish, fruits, vegetables,	Improves insulin resistance	medium term	ideal for people with kidney disease	though long-term sustainability is
nuts, and seeds, avoiding	Lowers triglyceride levels	(3-6 months)		debated (J Diabetes Sci Technol. 2009)
processed foods)				[28]

Foot Notes: Mediterranean & Vegan Diets: Ideal for long-term diabetes management with strong evidence supporting reduced HbA1c and better insulin function. Low-Carb & Keto Diets: Effective for rapid glycemic control but should be monitored for potential risks. DASH: Beneficial for metabolic improvements, especially in prediabetes and insulin resistance. Paleo Diet: Shows promising effects on glucose metabolism, but requires modifications for nutrient balance.

Yoga and Diabetes Control

Yoga, an ancient practice involving physical postures,

Breathing exercises, and meditation, has been widely studied for its impact on diabetes. Yoga practices enhance pancreatic function, improve insulin sensitivity, and lower stress-induced hyperglycemia.

Meta-analyses suggest that patients practicing yoga show marked improvements in fasting plasma glucose and HbA1c levels, comparable to those on standard diabetic medications.[29]

A comprehensive table on Yoga and Diabetes Control, detailing specific yoga practices, their therapeutic effects, recommended duration, contraindications, and scientific insights [Table – 3]:

Yoga Practice	Therapeutic Effects	Recommended	Contraindications	Scientific Insights & References
		Duration		
Asanas	Stimulates the pancreas, improving insulin	30-45 minutes	Avoid intense postures in	A meta-analysis found that yoga reduces
(Physical	secretion Enhances glucose metabolism and	daily	diabetic neuropathy or	fasting glucose by 20-30 mg/dL and HbA1c by
Postures)	peripheral insulin sensitivity Reduces obesity-		hypertension	0.5-1.0% (Endocrinol Metab (Seoul). 2018)
	related insulin resistance			[29]
Pranayama	Reduces stress-induced hyperglycemia Enhances	10-20 minutes	Not advised for individuals	Studies show significant reductions in fasting
(Breathing	oxygenation and detoxification Lowers cortisol	daily	with severe respiratory issues	glucose and cortisol levels, improving insulin
Exercises)	and improves autonomic nervous system			regulation (Rambam Maimonides Med J. 2022)
	function			[30]
Surya	Improves metabolism and weight control Boosts	5-10 rounds	Avoid in hypertension, joint	Research indicates that regular practice lowers
Namaskar (Sun	circulation and insulin function Enhances	daily	pain, or cardiovascular	HbA1c by 0.7-1.2% in Type 2 diabetics (J
Salutation)	cardiovascular health		conditions	Ayurveda Integr Med. 2022)[31]
Meditation and	Enhances emotional stability and reduces anxiety	10-15 minutes	Not recommended for those	Mindfulness-based interventions improve
Mindfulness	Lowers blood pressure and heart rate variability	daily	with severe mental health	HbA1c levels and stress-induced glucose spikes
	Supports long-term diabetes management		conditions without supervision	(Diabetes Spectr. 2009)[32]

Foot Notes: Asanas & Surya Namaskar: Improve pancreatic function, insulin sensitivity, and glucose metabolism. Pranayama & Shavasana: Reduce stress-related hyperglycemia and cortisol levels, crucial for diabetes management. Meditation & Mindfulness: Aid in long-term glycemic control by addressing emotional and psychological factors. Contraindications: Certain Yoga poses should be avoided by patients with cardiovascular issues, joint pain, or spinal conditions.

Herbal Therapy in Diabetes

Several medicinal plants, such as bitter melon (*Momordica charantia*),

Fenugreek (Trigonella foenum-graecum), and cinnamon (Cinnamomum verum), have demonstrated hypoglycemic effects. Clinical studies support the use of these herbs in lowering blood glucose levels, improving lipid profiles, and reducing inflammation. While herbal therapy provides a natural alternative, its efficacy varies depending on dosage and individual patient response. Conventional treatments. in contrast, offer standardized medication with well-documented efficacy but potential adverse effects. Here is a comprehensive table combining both sets of herbal therapies for diabetes management, along with their therapeutic effects, recommended dosages, contraindications, and scientific insights [Table – 4].

Herb	Therapeutic Effects	Recommended	Contraindications	Scientific Insights & References
		Dosage		
Jamun Giri	Lowers blood glucose levels Enhances	1-3 grams of seed	Caution during pregnancy and	Studies show significant reduction in fasting
(Syzygium cumini)	insulin sensitivity Rich in antioxidants	powder daily	breastfeeding May cause allergic	blood glucose levels. (Molecules, 2022)[33]
			reactions in some individuals	
Karela (Momordica	Reduces blood glucose levels	50-100 ml fresh	Avoid during pregnancy May cause	Regular use has been linked to significant
charantia)	Enhances insulin secretion Improves	juice or 900 mg fruit	gastrointestinal discomfort	improvements in fasting glucose levels.
	glucose uptake	extract daily		(Food Science and Biotechnology, 2022)[34]
Gudmar	Stimulates insulin secretion	400 mg leaf extract	Not recommended during pregnancy	Clinical trials report significant reductions in
(Gymnema	Regenerates pancreatic beta cells	daily	or lactation May enhance the effects	fasting blood glucose and HbA1c levels. (J
sylvestre)	Reduces intestinal glucose absorption		of other glucose-lowering	Endocrinol, 1999)[35]
			medications	
Neem (Azadirachta	Helps regulate blood sugar Improves	2-5 ml neem oil or	Not recommended for pregnant	Research indicates reductions in blood
indica)	insulin sensitivity Possesses anti-	1-2 grams of leaf	women Risk of liver toxicity in some	glucose levels and improvements in insulin
	inflammatory properties	powder daily	individuals	sensitivity.[36]
Kutki (Picrorhiza	Lowers blood glucose levels Improves	400-600 mg root	Avoid during pregnancy and lactation	Studies have shown reductions in blood
kurroa)	liver function Rich in antioxidants	extract daily	May cause gastrointestinal	glucose levels and improved liver enzyme
			discomfort	activity.[37]
Daru Haldi	Lowers fasting blood glucose and	500 mg, 2-3 times	May cause gastrointestinal	Studies suggest effects comparable to
(Berberis aristata)	HbA1c Improves lipid profile	daily	discomfort Potential interactions with	metformin in glycemic control.[38]
			medications	
Indrayan (Citrullus	Lowers blood glucose levels Improves	300 mg fruit powder	Avoid during pregnancy and lactation	Research indicates improvements in blood
colocynthis)	lipid profile Has anti-inflammatory	daily	Risk of toxicity at high doses	sugar and lipid levels.[39]
	properties			
Methi - Fenugreek	Improves insulin sensitivity Lowers	5-10 grams of	May cause gastrointestinal	Meta-analysis shows a reduction in HbA1c
(Trigonella	postprandial glucose levels Reduces	powdered seeds	symptoms Not recommended during	by approximately 0.85%.[40]
foenum-graecum)	cholesterol levels	daily, divided into	pregnancy	
		two doses		
Dalchini -	Enhances insulin receptor function	1-6 grams of	May cause liver issues in high doses	Some studies report a decrease in HbA1c by
Cinnamon	Lowers fasting blood glucose Reduces	cinnamon powder	Not recommended for individuals	up to 0.5%, though results are mixed.[41]
(Cinnamomum	triglycerides and LDL cholesterol	daily	with liver disease	
verum)				
Aloe Vera (Aloe	Lowers fasting blood glucose	1 tablespoon of aloe	May cause gastrointestinal	Research indicates a reduction in HbA1c by
barbadensis miller)	Improves HbA1c levels Enhances	vera gel daily	discomfort Not recommended during	approximately 0.99%.[42]
	insulin sensitivity		pregnancy	

Isabgol – Psyllium	Lowers postprandial glucose levels	10-15 grams of	May cause gastrointestinal bloating or	Meta-analysis indicates a reduction in HbA1c
(Plantago ovata)	Improves insulin sensitivity Aids in	husk daily, taken	gas Ensure adequate water intake to	by approximately 0.97%.[43]
	weight management	with water	prevent choking	
Nigella (Nigella	Enhances insulin production Reduces	1-3 grams of	May cause allergic reactions in some	Studies show a reduction in HbA1c by
sativa)	fasting blood glucose	seed powder	individuals Not recommended during	approximately 0.5%.[44]
		daily	pregnancy	
Guduchi	Enhances insulin secretion Improves	300-600 mg	Avoid in autoimmune disorders Not	Research suggests Guduchi helps regulate
(Tinospora	immune function Lowers blood	extract daily	recommended during pregnancy	blood sugar levels and reduces oxidative
cordifolia)	glucose levels			stress.[45]
Ashwagandha	Reduces stress and cortisol levels	300-600 mg	Avoid during pregnancy May lower blood	Clinical studies indicate improved insulin
(Withania	Enhances insulin sensitivity Lowers	root extract daily	pressure excessively in individuals on	sensitivity and reduced fasting blood
somnifera)	fasting blood glucose levels		antihypertensive medications	glucose. (J Pharmacy Research, 2021)[46]
Shilajit (Asphaltum	Enhances mitochondrial function and	300-500 mg	Avoid during pregnancy and lactation	Studies suggest improved glucose
punjabianum)	energy levels Improves glucose	purified Shilajit	May interact with diabetes medications	metabolism and reduction in fasting blood
	metabolism Reduces oxidative stress	extract daily		glucose levels. (J Pharmacy Research, 2021)
				[46]

Foot Notes: Efficacy: Herbs like Bitter Melon, Gudmar, Daru Haldi, Aloe Vera, and Fenugreek have demonstrated significant reductions in blood glucose and HbA1c levels, making them effective for diabetes management. Dosage & Administration: Adhering to the recommended dosage is crucial to maximize benefits and minimize potential side effects. Contraindications: Individuals who are pregnant, lactating, or on multiple medications should consult healthcare providers before using these herbs to avoid adverse effects. Scientific Validation: While many herbs show promising effects, their efficacy may vary based on individual responses. More extensive clinical trials are needed to establish standardized guidelines.

Comparison with Conventional Treatment

Conventional diabetes management includes pharmacotherapy, lifestyle modifications, and patient education. While medications effectively lower blood glucose levels, they may cause side effects such as weight gain, hypoglycemia, and cardiovascular risks. In contrast, naturopathy, diet, yoga, and herbal therapy focus on root causes, offering sustainable and non-invasive management strategies. However, these alternative therapies often require lifestyle commitment and may lack standardized dosage and regulation.[47]

Discussion

Current Status of Alternative Diabetes Management

Diabetes requires long-term management, & while conventional treatments like pharmacotherapy & lifestyle modifications help control blood glucose,

They often come with side effects such as weight gain and cardiovascular risks. Alternative therapies —including naturopathy, dietary interventions, yoga, and herbal therapy—offer promising solutions by improving insulin sensitivity, pancreatic function, and overall metabolic health. Research supports the benefits of these approaches: Yoga enhances fasting glucose levels, HbA1c, and sensitivity. Herbal therapies such as bitter melon, fenugreek, and Jamun Giri show potential in blood sugar regulation, though standardized dosages and long-term effects remain uncertain. Dietary interventions like the Mediterranean and lowcarbohydrate diets significantly reduce HbA1c and improve lipid profiles, but adherence varies among patients. Despite these advantages, integration into mainstream diabetes management is limited due to a lack of large-scale clinical trials, standardized protocols, and regulatory concerns. Several barriers hinder the widespread adoption of alternative diabetes treatments. Unlike conventional drugs, alternative therapies lack standardized dosages and protocols, leading to variations in potency due to differences in plant species, extraction methods, and preparation techniques. Many studies are smallscale or observational rather than randomized controlled trials (RCTs), making it difficult to validate efficacy and long-term safety.

Future Directions in Diabetes Management

To enhance the role of alternative therapies in diabetes care, future research should focus on:

 Conducting Large-Scale Clinical Trials: Wellstructured RCTs are needed to evaluate the long-term safety and effectiveness of alternative therapies, comparing them directly with conventional treatments.

- Developing Standardized Protocols and Dosages: Establishing clear guidelines for herbal therapy, yoga, and naturopathy can improve their acceptance in mainstream medicine.
- Integrating Alternative Therapies into Conventional Care: A holistic, patient-centered model combining pharmacotherapy with yoga and diet-based interventions may yield better outcomes than medication alone.
- Understanding Mechanistic Pathways: More studies are required to explore how herbal compounds, dietary changes, and yoga influence insulin signaling, oxidative stress, and inflammation. Biochemical and genetic research can also help identify patient subgroups who respond best to these therapies.

Conclusion

Although alternative diabetes therapies show promise, their full potential remains untapped due to a lack of large-scale research, standardization, and integration with conventional care. Moving forward, multidisciplinary collaborations between medical researchers, nutritionists, and practitioners of traditional medicine will be crucial in establishing a holistic, evidence-based diabetes management model that prioritizes both efficacy and safety. With ongoing research and clinical validation, naturopathy, diet, yoga, and herbal therapy could redefine diabetes care, offering sustainable, noninvasive solutions alongside modern pharmacotherapy.

References

- 1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2009 Jan;32(Suppl 1):S62-S67. doi: 10.2337/dc09-S062. PMID: 19118289; PMCID: PMC2613584 [Crossref][PubMed][Google Scholar]
- 2. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes - Global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020 Mar;10(1):107-111. doi: 10.2991/jegh.k.191028.001. PMID: 32175717; PMCID: PMC7310804 [Crossref][PubMed][Google Scholar]

- 3. García-Pérez LE, Alvarez M, Dilla T, Gil-Guillén V, Orozco-Beltrán D. Adherence to therapies in patients with type 2 diabetes. Diabetes Ther. 2013 Dec;4(2):175-194. doi: 10.1007/s13300-013-0034-y. PMID: 23990497; PMCID: PMC3889324 [Crossref][PubMed][Google Scholar]
- 4. Tiwari S, Saoji AA, Madle K, Sapkota N, Shashikiran HC, Shetty P. Naturopathy and yoga for improving quality of life in pemphigus vulgaris and managing co-morbid type 2 diabetes: A case report. J Ayurveda Integr Med. 2020;11(2):110-113. doi: 10.1016/j.jaim.2020.01.002 [Crossref][PubMed] [Google Scholar]
- 5. Venugopal V, Geethanjali S, Poonguzhali S, Padmavathi R, Mahadevan S, Silambanan S, Maheshkumar K. Effect of yoga on oxidative stress in type 2 diabetes mellitus: A systematic review and meta-analysis. Curr Diabetes Rev. 2022;18(2):e050421192663. doi: 10.2174/1573399817666210405104335 [Crossref] [PubMed][Google Scholar]
- 6. Naturopathic Approaches to Diabetes Management. Available at: https://aanmc.org/featured-articles/naturopathic-approaches-to-diabetes-management/. [Crossref][PubMed] [Google Scholar]
- 7. Pandey A, Tripathi P, Pandey R, Srivastava R, Goswami S. Alternative therapies useful in the management of diabetes: A systematic review. J Pharm Bioallied Sci. 2011;3(4):504-512. doi: 10.4103/0975-7406.90103 [Crossref][PubMed] [Google Scholar]
- 8. Ghongade S. A study on effect of naturopathy in diabetes control without medicine. J Drug Deliv Ther. 2019;9(5):158-160. doi: 10.22270/jddt.v9i5.3540 [Crossref][PubMed] [Google Scholar]
- 9. Schultz WM, Varghese T, Heinl RE, Dhindsa DS, Mahlof EN, Cai HC, Southmayd G, Sandesara PB, Eapen DJ, Sperling LS. Natural approaches in diabetes management: A review of diet, exercise, and natural products. Curr Pharm Des. 2018;24(1):84-98. doi: 10.2174/1381612822666161216114108 [Crossref] [PubMed][Google Scholar]

- 10. Tippens KM, Erlandsen A, Hanes DA, Graybill R, Jackson C, Briley J, Zwickey H. Impact of a short-term naturopathic whole-foods-based nutrition education intervention on dietary behavior and diabetes risk markers: A pilot study. J Altern Complement Med. 2019;25(2):234-240. doi: 10.1089/acm.2018.0025 [Crossref][PubMed] [Google Scholar]
- 11. Bairy S, Kumar AM, Raju M, Achanta S, Naik B, Tripathy JP, Zachariah R. Is adjunctive naturopathy associated with improved glycaemic control and a reduction in need for medications among type 2 diabetes patients? A prospective cohort study from India. BMC Complement Altern Med. 2016;16(1):290. doi: 10.1186/s12906-016-1264-0 [Crossref][PubMed][Google Scholar]
- 12. Bradley R, Sherman KJ, Catz S, Calabrese C, Oberg EB, Jordan L, Grothaus L, Cherkin D. Adjunctive naturopathic care for type 2 diabetes: Patient-reported and clinical outcomes after one year. BMC Complement Altern Med. 2012;12:44. doi: 10.1186/1472-6882-12-44 [Crossref][PubMed] [Google Scholar]
- 13. Saha A, Samadder A, Nandi S. Stem cell therapy in combination with naturopathy: Current progressive management of diabetes and associated complications. Curr Top Med Chem. 2023;23(8):649-689. doi: 10.2174/1568026623666221201150933 [Crossref] [PubMed][Google Scholar]
- 14. Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-based diets and phytochemicals in the management of diabetes mellitus and prevention of its complications: A review. Nutrients. 2024;16(21):3709. doi: 10.3390/nu16213709 [Crossref][PubMed][Google Scholar]
- 15. Oberg EB, Bradley RD, Allen J, McCrory MA. CAM: Naturopathic dietary interventions for patients with type 2 diabetes. Complement Ther Clin Pract. 2011;17(3):157-161. doi: 10.1016/j.ctcp.2011.02.007 [Crossref][PubMed] [Google Scholar]
- 16. Bairy S, Rao MR, Edla SR, Manthena SR, Tatavarti NVGD. Effect of an integrated naturopathy and yoga program on long-term glycemic control in type 2 diabetes mellitus patients: A prospective cohort study. Int J Yoga. 2020;13(1):42-49. doi: 10.4103/ijoy.IJOY_32_19 [Crossref][PubMed] [Google Scholar]

- 17. Stier-Jarmer M, Frisch D, Neuy S, Schuh A. A 3-week naturopathic intervention improves HbA1c, weight, and quality of life among overweight and obese adults with type 2 diabetes: 6-month results from a randomized trial. Altern Ther Health Med. 2021;27(S1):61-71. [Crossref][PubMed][Google Scholar]
- 18. Bradley R, Oberg EB. Naturopathic medicine and type 2 diabetes: A retrospective analysis from an academic clinic. Altern Med Rev. 2006;11(1):30-39. [Crossref][PubMed][Google Scholar]
- 19. Oberg EB, Bradley RD, Allen J, McCrory MA. CAM: Naturopathic dietary interventions for patients with type 2 diabetes. Complement Ther Clin Pract. 2011;17(3):157-161. doi: 10.1016/j.ctcp.2011.02.007 [Crossref][PubMed] [Google Scholar]
- 20. Upadhyay A, Balkrishna A, Upadhyay R. Effect of pranayama (voluntary regulated yoga breathing) and yogasana (yoga postures) in diabetes mellitus: A scientific review. J Complement Integr Med. 2008;5. doi: 10.2202/1553-3840.1114 [Crossref] [PubMed][Google Scholar]
- 21. Acharya B, Upadhyay A, Upadhyay RT, Kumar A. Effect of pranayama (voluntary regulated breathing) and yogasana (yoga postures) on lipid profile in normal healthy junior footballers. Int J Yoga. 2010;3(2):70. doi: 10.4103/0973-6131.72633 [Crossref][PubMed][Google Scholar]
- 22. Chawla R, Nair R, Sood VR, Mukherjee S, Arora A. Role of naturopathy on physical and biochemical parameters in patients with Type 2 diabetes mellitus. Indian J Tradit Knowl. 2019;18(3):430-438. [Crossref][PubMed][Google Scholar]
- 23. Reynolds A, Mitri J. Dietary advice for individuals with diabetes. [Updated 2024 Apr 28]. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: [Article][Crossref][PubMed] [Google Scholar]
- 24. Martín-Peláez S, Fito M, Castaner O. Mediterranean diet effects on type 2 diabetes prevention, disease progression, and related Α mechanisms: review. Nutrients. 2020 Jul 27;12(8):2236. doi: 10.3390/nu12082236. PMID: 32726990; PMCID: PMC7468821 [Crossref] [PubMed][Google Scholar]

- 25. Łuszczki E, Boakye F, Zielińska M, Dereń K, Bartosiewicz A, Oleksy Ł, Stolarczyk A. Vegan diet: Nutritional components, implementation, and effects on adults' health. Front Nutr. 2023 Nov 9;10:1294497. doi: 10.3389/fnut.2023.1294497. Erratum in: Front Nutr. 2024 Jan 5;10:1354336. doi: 10.3389/fnut.2023.1354336. PMID: 38024367; PMCID: PMC10665534 [Crossref][PubMed][Google Scholar]
- 26. Pavlidou E, Papadopoulou SK, Fasoulas A, Mantzorou M, Giaginis C. Clinical evidence of low-carbohydrate diets against obesity and diabetes mellitus. Metabolites. 2023;13(2):240. doi: 10.3390/metabo13020240 [Crossref][PubMed] [Google Scholar]
- 27. Pellegrini P, Lemasson P, Rastrelli L, D'Elia M. Effectiveness of ketogenic therapy in patients with obesity and diabetes: A narrative review. Explor Foods Foodomics. 2024;2:313-325. doi: 10.37349/eff.2024.00039 [Crossref][PubMed] [Google Scholar]
- 28. Klonoff DC. The beneficial effects of a Paleolithic diet on type 2 diabetes and other risk factors for cardiovascular disease. J Diabetes Sci Technol. 2009 Nov 1;3(6):1229-1232. doi: 10.1177/193229680900300601. PMID: 20144375; PMCID: PMC2787021 [Crossref][PubMed][Google Scholar]
- 29. Raveendran AV, Deshpandae A, Joshi SR. Therapeutic role of yoga in type 2 diabetes. Endocrinol Metab (Seoul). 2018 Sep;33(3):307-317. doi: 10.3803/EnM.2018.33.3.307. PMID: 30112866; PMCID: PMC6145966 [Crossref][PubMed][Google Scholar]
- 30. Mangala Gowri M, Rajendran J, Srinivasan AR, Bhavanani AB, Meena R. Impact of an integrated yoga therapy protocol on insulin resistance and glycemic control in patients with type 2 diabetes mellitus. Rambam Maimonides Med J. 2022 Jan 27;13(1):e0005. doi: 10.5041/RMMJ.10462. PMID: 35089124; PMCID: PMC8798588 [Crossref] [PubMed][Google Scholar]
- 31. Prasanna Venkatesh L, Vandhana S. Insights on Surya Namaskar from its origin to application towards health. J Ayurveda Integr Med. 2022 Apr-Jun;13(2):100530. doi: 10.1016/j.jaim.2021.10.002. PMID: 34974957; PMCID: PMC8814407 [Crossref][PubMed][Google Scholar]

- 32. Whitebird RR, Kreitzer MJ, O'Connor PJ. Mindfulness-based stress reduction and diabetes. Diabetes Spectr. 2009 Sep 21;22(4):226-230. doi: 10.2337/diaspect.22.4.226. PMID: 20657669; PMCID: PMC2909138 [Crossref][PubMed][Google Scholar]
- 33. Rizvi MK, Rabail R, Munir S, Inam-Ur-Raheem M, Qayyum MMN, Kieliszek M, Hassoun A, Aadil RM. Astounding health benefits of Jamun (Syzygium cumini) toward metabolic syndrome. Molecules. 2022 Oct 24;27(21):7184. doi: 10.3390/molecules27217184. PMID: 36364010; PMCID: PMC9654918 [Crossref][PubMed][Google Scholar]
- 34. Kim B, Lee HS, Kim HJ, Lee H, Lee IY, Ock S, Kwon S, Kang SS, Choi Y. Momordica charantia (bitter melon) efficacy and safety on glucose metabolism in Korean prediabetes participants: A 12-week, randomized clinical study. Food Sci Biotechnol. 2022 Dec 14;32(5):697-704. doi: 10.1007/s10068-022-01214-9. PMID: 37009042; PMCID: PMC10050654 [Crossref][PubMed][Google Scholar]
- 35. Persaud SJ, Al-Majed H, Raman A, Jones PM. Gymnema sylvestre stimulates insulin release in vitro by increased membrane permeability. J Endocrinol. 1999 Nov;163(2):207-212. doi: 10.1677/joe.0.1630207. PMID: 10556769 [Crossref][PubMed][Google Scholar]
- 36. Yarmohammadi F, Mehri S, Najafi N, Salar Amoli S, Hosseinzadeh H. The protective effect of Azadirachta indica (neem) against metabolic syndrome: A review. Iran J Basic Med Sci. 2021 Mar;24(3):280-292. doi: 10.22038/ijbms.2021.48965.11218. PMID: 33995939; PMCID: PMC8087850 [Crossref] [PubMed][Google Scholar]
- 37. Raut A, Dhami-Shah H, Phadke A, Shindikar A, Udipi S, Joshi J, Vaidya R, Vaidya ADB. Picrorhiza kurroa, Royle ex Benth: Traditional uses, phytopharmacology, and translational potential in therapy of fatty liver disease. J Ayurveda Integr Med. 2023 Jan-Feb;14(1):100558. doi: 10.1016/j.jaim.2022.100558. PMID: 35659739; PMCID: PMC10105242 [Crossref][PubMed][Google Scholar]

- 38. Pirillo A, Catapano AL. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis. 2015 Dec;243(2):449-461. doi: 10.1016/j.atherosclerosis.2015.09.032. PMID: 26520899 [Crossref][PubMed][Google Scholar]
- 39. Barghamdi B, Ghorat F, Asadollahi K, Sayehmiri K, Peyghambari R, Abangah G. Therapeutic effects of Citrullus colocynthis fruit in patients with type II diabetes: A clinical trial study. J Pharm Bioallied Sci. 2016 Apr-Jun;8(2):130-134. doi: 10.4103/0975-7406.171702. PMID: 27134465; PMCID: PMC4832903 [Crossref][PubMed][Google Scholar]
- 40. Haxhiraj M, White K, Terry C. The role of Fenugreek in the management of type 2 diabetes. Int J Mol Sci. 2024 Jun 26;25(13):6987. doi: 10.3390/ijms25136987. PMID: 39000103; PMCID: PMC11240913 [Crossref][PubMed][Google Scholar]
- 41. Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 2003 Dec;26(12):3215-3218. doi: 10.2337/diacare.26.12.3215. PMID: 14633804 [Crossref][PubMed][Google Scholar]
- 42. Dick WR, Fletcher EA, Shah SA. Reduction of fasting blood glucose and hemoglobin A1c using oral aloe vera: A meta-analysis. J Altern Complement Med. 2016 Jun;22(6):450-457. doi: 10.1089/acm.2015.0122. PMID: 27152917 [Crossref][PubMed][Google Scholar]
- 43. Abutair AS, Naser IA, Hamed AT. Soluble fibers from psyllium improve glycemic response and body weight among diabetes type 2 patients (randomized control trial). Nutr J. 2016 Oct 12;15(1):86. doi: 10.1186/s12937-016-0207-4. PMID: 27733151; PMCID: PMC5062871 [Crossref][PubMed][Google Scholar]

- 44. Mashayekhi-Sardoo H, Sepahi S, Rahimi VB, Askari VR. Application of Nigella sativa as a functional food in diabetes and related complications: Insights on molecular, cellular, and metabolic effects. J Funct Foods. 2024;122:106518. doi: 10.1016/j.jff.2024.106518 [Crossref][PubMed] [Google Scholar]
- 45. Upadhyay AK, Kumar K, Kumar A, Mishra HS. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi)—Validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res. 2010 Apr;1(2):112-121. doi: 10.4103/0974-7788.64405. PMID: 20814526; PMCID: PMC2924974 [Crossref] [PubMed][Google Scholar]
- 46. Upadhyay AK, Kaushal K, Mishra H. Effects of combination of Shilajit extract and Ashwagandha (Withania somnifera) on fasting blood sugar and lipid profile. J Pharm Res. 2009;2(5):897-899. [Crossref][PubMed][Google Scholar]
- 47. McBenedict B, Orfao AL, Goh KS, Yau RCC, Alphonse B, Machado Lima J, Ahmed HA, Ienaco GP, Cristina de Souza E, Lima Pessôa B, Hauwanga WN, Valentim G, de Souza Chagas M, Abrahão A. The role of alternative medicine in managing type 2 diabetes: A comprehensive review. Cureus. 2024 Jun 8;16(6):e61965. doi: 10.7759/cureus.61965. PMID: 38978922; PMCID: PMC11229830 [Crossref] [PubMed][Google Scholar]

Disclaimer / Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of Journals and/or the editor(s). Journals and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.